Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
China CDC Wkly ; 6(14): 282-288, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38634099

RESUMEN

What is already known about this topic?: The global burden of chronic kidney disease (CKD) is on the rise. What is added by this report?: In 2019, 5.58 million individuals in China were affected by CKD related to hypertension, leading to 70,260 fatalities and 1.69 million disability-adjusted life years (DALYs). The most affected groups were men, older individuals, and residents of western China. Over the period from 2010-2019, the age-standardized prevalence rate (ASPR) remained constant, and the age-standardized mortality rate (ASMR) and age-standardized DALY rate (ASDR) showed a decreasing trend. However, there was an increase in the number of cases, deaths, and DALYs associated with this condition. What are the implications for public health practice?: Hypertension significantly contributes to the burden of CKD; therefore, raising awareness and implementing early screening measures are essential.

2.
Gastric Cancer ; 27(2): 324-342, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38310631

RESUMEN

Helicobacter pylori (H. pylori, Hp) has been designated a class I carcinogen and is closely associated with severe gastric diseases. During colonization in the gastric mucosa, H. pylori develops immune escape by inducing host immune tolerance. The gastric epithelium acts as the first line of defense against H. pylori, with Toll-like receptors (TLRs) in gastric epithelial cells being sensitive to H. pylori components and subsequently activating the innate immune system. However, the mechanism of immune tolerance induced by H. pylori through the TLR signalling pathway has not been fully elucidated. In this research, we detected the expression of TLRs and inflammatory cytokines in GES-1 cells upon sustained exposure to H. pylori or H. pylori lysate from 1 to 30 generations and in Mongolian gerbils infected with H. pylori for 5 to 90 weeks. We found that the levels of TLR6 and inflammatory cytokines first increased and then dropped during the course of H. pylori treatment in vitro and in vivo. The restoration of TLR6 potentiated the expression of IL-1ß and IL-8 in GES-1 cells, which recruited neutrophils and reduced the colonization of H. pylori in the gastric mucosa of gerbils. Mechanistically, we found that persistent infection with H. pylori reduces the sensitivity of TLR6 to bacterial components and regulates the expression of inflammatory cytokines in GES-1 cells through TLR6/JNK signaling. The TLR6 agonist obviously alleviated inflammation in vitro and in vivo. Promising results suggest that TLR6 may be a potential candidate immunotherapy drug for H. pylori infection.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Animales , Humanos , Receptor Toll-Like 6/metabolismo , Gerbillinae , Neoplasias Gástricas/metabolismo , Citocinas/metabolismo , Infecciones por Helicobacter/complicaciones , Mucosa Gástrica/metabolismo
3.
J Virol ; 98(1): e0078923, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38168677

RESUMEN

Zika virus (ZIKV) infection caused neurological complications and male infertility, leading to the accumulation of antigen-specific immune cells in immune-privileged organs (IPOs). Thus, it is important to understand the immunological responses to ZIKV in IPOs. We extensively investigated the ZIKV-specific T cell immunity in IPOs in Ifnar1-/- mice, based on an immunodominant epitope E294-302 tetramer. The distinct kinetics and functions of virus-specific CD8+ T cells infiltrated into different IPOs were characterized, with late elevation in the brain and spinal cord. Single epitope E294-302-specific T cells can account for 20-60% of the total CD8+ T cells in the brain, spinal cord, and testicle and persist for at least 90 days in the brain and spinal cord. The E294-302-specific TCRαßs within the IPOs are featured with the majority of clonotypes utilizing TRAV9N-3 paired with diverse TRBV chains, but with distinct αß paired clonotypes in 7 and 30 days post-infection. Specific chemokine receptors, Ccr2 and Ccr5, were selectively expressed in the E294-302-specific CD8+ T cells within the brain and testicle, indicating an IPO-oriented migration of virus-specific CD8+ T cells after infection. Overall, this study adds to the understanding of virus-specific CD8+ T cell responses for controlling and clearing ZIKV infection in IPOs.IMPORTANCEThe immune-privileged organs (IPOs), such as the central nervous system and testicles, presented pathogenicity and inflammation after Zika virus (ZIKV) infection with infiltrated CD8+ T cells. Our data show that CD8+ T cells keep up with virus increases and decreases in immune-privileged organs. Furthermore, our study provides the first ex vivo comparative analyses of the composition and diversity related to TCRα/ß clonotypes across anatomical sites and ZIKV infection phases. We show that the vast majority of TCRα/ß clonotypes in tissues utilize TRAV9N-3 with conservation. Specific chemokine expression, including Ccr2 and Ccr5, was found to be selectively expressed in the E294-302-specific CD8+ T cells within the brain and testicle, indicating an IPO-oriented migration of the virus-specific CD8+ T cells after the infection. Our study adds insights into the anti-viral immunological characterization and chemotaxis mechanism of virus-specific CD8+ T cells after ZIKV infection in different IPOs.


Asunto(s)
Linfocitos T CD8-positivos , Privilegio Inmunológico , Infección por el Virus Zika , Animales , Masculino , Ratones , Encéfalo/inmunología , Encéfalo/virología , Linfocitos T CD8-positivos/inmunología , Receptor de Interferón alfa y beta/genética , Virus Zika , Infección por el Virus Zika/inmunología , Ratones Noqueados , Testículo/inmunología , Testículo/virología
4.
Zool Res ; 44(6): 1003-1014, 2023 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-37759335

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can result in more severe syndromes and poorer outcomes in patients with diabetes and obesity. However, the precise mechanisms responsible for the combined impact of corona virus disease 2019 (COVID-19) and diabetes have not yet been elucidated, and effective treatment options for SARS-CoV-2-infected diabetic patients remain limited. To investigate the disease pathogenesis, K18-hACE2 transgenic (hACE2 Tg) mice with a leptin receptor deficiency (hACE2-Lepr -/-) or high-fat diet (hACE2-HFD) background were generated. The two mouse models were intranasally infected with a 5×10 5 median tissue culture infectious dose (TCID 50) of SARS-CoV-2, with serum and lung tissue samples collected at 3 days post-infection. The hACE2-Lepr -/- mice were then administered a combination of low-molecular-weight heparin (LMWH) (1 mg/kg or 5 mg/kg) and insulin via subcutaneous injection prior to intranasal infection with 1×10 4 TCID 50 of SARS-CoV-2. Daily drug administration continued until the euthanasia of the mice. Analyses of viral RNA loads, histopathological changes in lung tissue, and inflammation factors were conducted. Results demonstrated similar SARS-CoV-2 susceptibility in hACE2 Tg mice under both lean (chow diet) and obese (HFD) conditions. However, compared to the hACE2-Lepr +/+ mice, hACE2-Lepr -/- mice exhibited more severe lung injury, enhanced expression of inflammatory cytokines and hypoxia-inducible factor-1α, and increased apoptosis. Moreover, combined LMWH and insulin treatment effectively reduced disease progression and severity, attenuated lung pathological changes, and mitigated inflammatory responses. In conclusion, pre-existing diabetes can lead to more severe lung damage upon SARS-CoV-2 infection, and LMWH may be a valuable therapeutic approach for managing COVID-19 patients with diabetes.


Asunto(s)
Antiinfecciosos , COVID-19 , Diabetes Mellitus , Humanos , Animales , Ratones , Heparina , Heparina de Bajo-Peso-Molecular , SARS-CoV-2 , COVID-19/veterinaria , Diabetes Mellitus/veterinaria , Insulina/uso terapéutico , Modelos Animales de Enfermedad
5.
Emerg Microbes Infect ; 12(2): 2231573, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37394992

RESUMEN

Highly contagious respiratory illnesses like influenza and COVID-19 pose serious risks to public health. A two-in-one vaccine would be ideal to avoid multiple vaccinations for these diseases. Here, we generated a chimeric receptor binding domain of the spike protein (S-RBD) and hemagglutinin (HA)-stalk-based vaccine for both SARS-CoV-2 and influenza viruses. The S-RBD from SARS-CoV-2 Delta was fused to the headless HA from H1N1 (H1Delta), creating a chimera that forms trimers in solution. The cryo-electron microscopy structure of the chimeric protein complexed with the RBD-targeting CB6 and the HA-stalk-targeting CR9114 antibodies shows that the trimeric protein is stable and accessible for neutralizing antibody binding. Immunization with the vaccine elicited high and long-lasting neutralizing antibodies and effectively protected mice against the challenges of lethal H1N1 or heterosubtypic H5N8, as well as the SARS-CoV-2 Delta or Omicron BA.2 variants. Overall, this study offers a two-in-one universal vaccine design to combat infections caused by both SARS-CoV-2 variants of concern and influenza viruses.


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Ratones , Animales , Humanos , Hemaglutininas , Vacunas contra la COVID-19 , Subtipo H1N1 del Virus de la Influenza A/genética , Microscopía por Crioelectrón , Anticuerpos Antivirales , COVID-19/prevención & control , SARS-CoV-2 , Vacunas contra la Influenza/genética , Anticuerpos Neutralizantes , Glicoproteína de la Espiga del Coronavirus/genética
6.
Viruses ; 14(11)2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36366430

RESUMEN

Zika virus (ZIKV)-specific T cells are activated by different peptides derived from virus structural and nonstructural proteins, and contributed to the viral clearance or protective immunity. Herein, we have depicted the profile of CD8+ and CD4+ T cell immunogenicity of ZIKV proteins in C57BL/6 (H-2b) and BALB/c (H-2d) mice, and found that featured cellular immunity antigens were variant among different murine alleles. In H-2b mice, the proteins E, NS2, NS3 and NS5 are recognized as immunodominant antigens by CD8+ T cells, while NS4 is dominantly recognized by CD4+ T cells. In contrast, in H-2d mice, NS1 and NS4 are the dominant CD8+ T cell antigen and NS4 as the dominant CD4+ T cell antigen, respectively. Among the synthesized 364 overlapping polypeptides spanning the whole proteome of ZIKV, we mapped 91 and 39 polypeptides which can induce ZIKV-specific T cell responses in H-2b and H-2d mice, respectively. Through the identification of CD8+ T cell epitopes, we found that immunodominant regions E294-302 and NS42351-2360 are hotspots epitopes with a distinct immunodominance hierarchy present in H-2b and H-2d mice, respectively. Our data characterized an overall landscape of the immunogenic spectrum of the ZIKV polyprotein, and provide useful insight into the vaccine development.


Asunto(s)
Vacunas , Infección por el Virus Zika , Virus Zika , Animales , Ratones , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Epítopos de Linfocito T , Epítopos Inmunodominantes , Ratones Endogámicos C57BL , Infección por el Virus Zika/prevención & control , Proteínas no Estructurales Virales/inmunología , Proteínas del Envoltorio Viral/inmunología
7.
Biomed Res Int ; 2022: 6036457, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35392259

RESUMEN

Identifying Helicobacter pylori (H. pylori, Hp) infection in animals before and after artificial infection influences the subsequent experiment. We established effective and noninvasive detection methods, including the gastric fluid nested polymerase chain reaction (PCR) method and the 13C-urea breath test, which can detect Hp before modeling Hp infection in Mongolian gerbils. We designed a gas collection equipment for gerbils. Hp nested PCR was also performed on gastric fluid, gastric mucosa, duodenal contents, and faeces of gerbils challenged with Hp. Conventional Hp detection methods, including rapid urease assay and immunohistochemistry, were compared. Moreover, we assessed the natural infection of Hp in 135 gerbils that had never been exposed to Hp artificially from the major laboratory gerbil groups in China. In 10 Hp infected gerbils, the positive detection results were 100%, 100%, 90%, and 10% in gastric fluid, gastric mucosa, duodenal contents, and faeces with nested PCR, respectively. A rapid urease test performed on gastric mucosa showed that all animals were infected with Hp. Immunohistochemical detection and bacteria culture of gastric mucosa samples that were positive by the nested PCR method also confirmed the presence of Hp. 9% (3/35) and 6% (2/31) natural infection rates were found in conventional gerbil groups from the Capital Medical University and Zhejiang Laboratory Animal Center. In conclusion, we established two noninvasive Hp detection methods that can be performed before modelingHp infection, including the gastric fluid nested PCR method and the 13C-urea breath test.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Animales , Modelos Animales de Enfermedad , Mucosa Gástrica , Gerbillinae , Infecciones por Helicobacter/diagnóstico , Infecciones por Helicobacter/microbiología , Urea , Ureasa
8.
Nat Immunol ; 22(8): 958-968, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34267374

RESUMEN

Antibody-dependent enhancement (ADE) is an important safety concern for vaccine development against dengue virus (DENV) and its antigenically related Zika virus (ZIKV) because vaccine may prime deleterious antibodies to enhance natural infections. Cross-reactive antibodies targeting the conserved fusion loop epitope (FLE) are known as the main sources of ADE. We design ZIKV immunogens engineered to change the FLE conformation but preserve neutralizing epitopes. Single vaccination conferred sterilizing immunity against ZIKV without ADE of DENV-serotype 1-4 infections and abrogated maternal-neonatal transmission in mice. Unlike the wild-type-based vaccine inducing predominately cross-reactive ADE-prone antibodies, B cell profiling revealed that the engineered vaccines switched immunodominance to dispersed patterns without DENV enhancement. The crystal structure of the engineered immunogen showed the dimeric conformation of the envelope protein with FLE disruption. We provide vaccine candidates that will prevent both ZIKV infection and infection-/vaccination-induced DENV ADE.


Asunto(s)
Acrecentamiento Dependiente de Anticuerpo/inmunología , Antígenos Virales/inmunología , Reacciones Cruzadas/inmunología , Vacunas contra el Dengue/inmunología , Dengue/prevención & control , Virus Zika/inmunología , Aedes , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Chlorocebus aethiops , Cricetinae , Virus del Dengue/inmunología , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Receptor de Interferón alfa y beta/genética , Vacunación , Células Vero , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/prevención & control
9.
Front Oncol ; 10: 581364, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33194715

RESUMEN

Helicobacter pylori is designated as a class I carcinogen of human gastric cancer following long-term infection. During this process, H. pylori bacteria persist in proliferation and death, and release bacterial components that come into contact with gastric epithelial cells and regulate host cell function. However, the impact of long-term exposure to H. pylori lysate on the pathological changes of gastric cells is not clear. In this study, we aimed to investigate the regulation and mechanisms involved in gastric cell dysfunction following continuous exposure to H. pylori lysate. We co-cultured gastric cell lines GES-1 and MKN-45 with H. pylori lysate for 30 generations, and we found that sustained exposure to H. pylori lysate inhibited GES-1 cell invasion, migration, autophagy, and apoptosis, while it did not inhibit MKN-45 cell invasion or migration. Furthermore, Mongolian gerbils infected with H. pylori ATCC 43504 strains for 90 weeks confirmed the in vitro results. The clinical and in vitro data indicated that sustained exposure to H. pylori lysate inhibited cell apoptosis and autophagy through the Nod1-NF-κB/MAPK-ERK/FOXO4 signaling pathway. In conclusion, sustained exposure to H. pylori lysate promoted proliferation of gastric epithelial cells and inhibited autophagy and apoptosis via Nod1-NF-κB/MAPK-ERK/FOXO4 signaling pathway. In the process of H. pylori-induced gastric lesions, H. pylori lysate plays as an "accomplice" to carcinogenesis.

10.
Science ; 368(6496): 1274-1278, 2020 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-32404477

RESUMEN

Neutralizing antibodies could potentially be used as antivirals against the coronavirus disease 2019 (COVID-19) pandemic. Here, we report isolation of four human-origin monoclonal antibodies from a convalescent patient, all of which display neutralization abilities. The antibodies B38 and H4 block binding between the spike glycoprotein receptor binding domain (RBD) of the virus and the cellular receptor angiotensin-converting enzyme 2 (ACE2). A competition assay indicated different epitopes on the RBD for these two antibodies, making them a potentially promising virus-targeting monoclonal antibody pair for avoiding immune escape in future clinical applications. Moreover, a therapeutic study in a mouse model validated that these antibodies can reduce virus titers in infected lungs. The RBD-B38 complex structure revealed that most residues on the epitope overlap with the RBD-ACE2 binding interface, explaining the blocking effect and neutralizing capacity. Our results highlight the promise of antibody-based therapeutics and provide a structural basis for rational vaccine design.


Asunto(s)
Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , Infecciones por Coronavirus/terapia , Peptidil-Dipeptidasa A/inmunología , Neumonía Viral/terapia , Receptores Virales/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Enzima Convertidora de Angiotensina 2 , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/aislamiento & purificación , COVID-19 , Modelos Animales de Enfermedad , Humanos , Epítopos Inmunodominantes/química , Epítopos Inmunodominantes/inmunología , Pulmón/inmunología , Pulmón/virología , Ratones , Pruebas de Neutralización , Pandemias , Dominios Proteicos , Carga Viral/inmunología
11.
PLoS Pathog ; 16(4): e1008509, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32302362

RESUMEN

Zika virus (ZIKV) is a unique flavivirus with high tropism to the testes. ZIKV can persist in human semen for months and can cause testicular damage in male mice. However, the mechanisms through which ZIKV enters the testes remain unclear. In this study, we revealed that matrix metalloproteinase 9 (MMP9) was upregulated by ZIKV infection in cell culture and in A129 mice. Furthermore, using an in vitro Sertoli cell barrier model and MMP9-/- mice, we found that ZIKV infection directly affected the permeability of the blood-testis barrier (BTB), and knockout or inhibition of MMP9 reduced the effects of ZIKV on the Sertoli cell BTB, highlighting its role in ZIKV-induced disruption of the BTB. Interestingly, the protein levels of MMP9 were elevated by ZIKV nonstructural protein 1 (NS1) in primary mouse Sertoli cells (mSCs) and other cell lines. Moreover, the interaction between NS1 and MMP9 induced the K63-linked polyubiquitination of MMP9, which enhanced the stability of MMP9. The upregulated MMP9 level led to the degradation of essential proteins involved in the maintenance of the BTB, such as tight junction proteins (TJPs) and type Ⅳ collagens. Collectively, we concluded that ZIKV infection promoted the expression of MMP9 which was further stabilized by NS1 induced K63-linked polyubiquitination to affect the TJPs/ type Ⅳ collagen network, thereby disrupting the BTB and facilitating ZIKV entry into the testes.


Asunto(s)
Barrera Hematotesticular/metabolismo , Barrera Hematotesticular/virología , Metaloproteinasa 9 de la Matriz/metabolismo , Testículo/virología , Infección por el Virus Zika/metabolismo , Virus Zika/fisiología , Células A549 , Animales , Barrera Hematotesticular/enzimología , Colágeno Tipo IV/metabolismo , Células HEK293 , Células HeLa , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Semen/metabolismo , Semen/virología , Células de Sertoli/enzimología , Células de Sertoli/metabolismo , Células de Sertoli/virología , Espermatogénesis , Testículo/irrigación sanguínea , Testículo/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Regulación hacia Arriba , Proteínas no Estructurales Virales/metabolismo , Internalización del Virus , Infección por el Virus Zika/enzimología , Infección por el Virus Zika/virología
12.
Front Microbiol ; 10: 2520, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31798540

RESUMEN

MraW is a 16S rRNA methyltransferase and plays a role in the fine-tuning of the ribosomal decoding center. It was recently found to contribute to the virulence of Staphylococcus aureus. In this study, we examined the function of MraW in Escherichia coli O157:H7 and found that the deletion of mraW led to decreased motility, flagellar production and DNA methylation. Whole-genome bisulfite sequencing showed a genome wide decrease of methylation of 336 genes and 219 promoters in the mraW mutant including flagellar genes. The methylation level of flagellar genes was confirmed by bisulfite PCR sequencing. Quantitative reverse transcription PCR results indicated that the transcription of these genes was also affected. MraW was furtherly observed to directly bind to the four flagellar gene sequences by electrophoretic mobility shift assay (EMSA). A common flexible motif in differentially methylated regions (DMRs) of promoters and coding regions of the four flagellar genes was identified. Reduced methylation was correlated with altered expression of 21 of the 24 genes tested. DNA methylation activity of MraW was confirmed by DNA methyltransferase activity assay in vitro and repressed by DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-aza). In addition, the mraW mutant colonized poorer than wild type in mice. We also found that the expression of mraZ in the mraW mutant was increased confirming the antagonistic effect of mraW on mraZ. In conclusion, mraW was found to be a DNA methylase and have a wide-ranging effect on E. coli O157:H7 including motility and virulence in vivo via genome wide methylation and mraZ antagonism.

13.
J Vis Exp ; (140)2018 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-30394402

RESUMEN

The Zika virus (ZIKV) can induce inflammation in immunoprivileged organs (e.g., the brain and testis), leading to the Guillain-Barré syndrome and damaging the testes. During an infection with the ZIKV, immune cells have been shown to infiltrate into the tissues. However, the cellular mechanisms that define the protection and/or immunopathogenesis of these immune cells during a ZIKV infection are still largely unknown. Herein, we describe methods to evaluate the virus-specific T-cell functionality in these immunoprivileged organs of ZIKV-infected mice. These methods include a) a ZIKV infection and vaccine inoculation in Ifnar1-/- mice; b) histopathology, immunofluorescence, and immunohistochemistry assays to detect the virus infection and inflammation in the brain, testes, and spleen; c) the preparation of a tetramer of ZIKV-derived T-cell epitopes; d) the detection of ZIKV-specific T cells in the monocytes isolated from the brain, testes, and spleen. Using these approaches, it is possible to detect the antigen-specific T cells that have infiltrated into the immunoprivileged organs and to evaluate the functions of these T cells during the infection: potential immune protection via virus clearance and/or immunopathogenesis to exacerbate the inflammation. These findings may also help to clarify the contribution of T cells induced by the immunization against ZIKV.


Asunto(s)
Linfocitos T/inmunología , Infección por el Virus Zika/inmunología , Virus Zika/inmunología , Animales , Ratones , Receptor de Interferón alfa y beta
14.
Sci Rep ; 8(1): 3541, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29476066

RESUMEN

The association between Zika virus (ZIKV) infection and congenital malformations such as microcephaly in infants is a public health emergency. Although various in vivo and in vitro models are used for ZIKV research, few animal models are available for resolving the effects of maternal ZIKV infection on neonatal development. Here, we established an immunocompetent mouse model via intrauterine inoculation. Our results confirmed that ZIKV, but not dengue virus, infection caused spontaneous abortions, brain malformations, ocular abnormalities, spinal cord defects and paralysis in mouse offspring. Aside from microcephaly and hippocampal dysplasia, eye abnormalities, including microphthalmia, thinner optic nerves, damaged retinae, and deficient visual projection, were also observed following ZIKV infection. Moreover, ZIKV-infected offspring showed a loss of alpha motor neurons in the spinal cord and cerebellar malformation, which may cause paralysis. ZIKV also impaired adult neurogenesis in neonatal mice. Due to its intact immunity, our rodent model can be used to systematically evaluate the impact of ZIKV on embryonic and neonatal development and to explore potential therapies.


Asunto(s)
Transmisión Vertical de Enfermedad Infecciosa , Complicaciones Infecciosas del Embarazo/virología , Infección por el Virus Zika/transmisión , Virus Zika/patogenicidad , Animales , Animales Recién Nacidos/virología , Modelos Animales de Enfermedad , Femenino , Humanos , Huésped Inmunocomprometido/genética , Lactante , Ratones , Microcefalia , Enfermedades del Sistema Nervioso/fisiopatología , Enfermedades del Sistema Nervioso/virología , Malformaciones del Sistema Nervioso/fisiopatología , Malformaciones del Sistema Nervioso/virología , Neurogénesis/genética , Embarazo , Complicaciones Infecciosas del Embarazo/fisiopatología , Virus Zika/genética , Infección por el Virus Zika/fisiopatología , Infección por el Virus Zika/virología
15.
J Virol ; 92(6)2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29298885

RESUMEN

The recent outbreak of Zika virus (ZIKV) has emerged as a global health concern. ZIKV can persist in human semen and be transmitted by sexual contact, as well as by mosquitoes, as seen for classical arboviruses. We along with others have previously demonstrated that ZIKV infection leads to testis damage and infertility in mouse models. So far, no prophylactics or therapeutics are available; therefore, vaccine development is urgently demanded. Recombinant chimpanzee adenovirus has been explored as the preferred vaccine vector for many pathogens due to the low preexisting immunity against the vector among the human population. Here, we developed a ZIKV vaccine based on recombinant chimpanzee adenovirus type 7 (AdC7) expressing ZIKV M/E glycoproteins. A single vaccination of AdC7-M/E was sufficient to elicit potent neutralizing antibodies and protective immunity against ZIKV in both immunocompetent and immunodeficient mice. Moreover, vaccinated mice rapidly developed neutralizing antibody with high titers within 1 week postvaccination, and the elicited antiserum could cross-neutralize heterologous ZIKV strains. Additionally, ZIKV M- and E-specific T cell responses were robustly induced by AdC7-M/E. Moreover, one-dose inoculation of AdC7-M/E conferred mouse sterilizing immunity to eliminate viremia and viral burden in tissues against ZIKV challenge. Further investigations showed that vaccination with AdC7-M/E completely protected against ZIKV-induced testicular damage. These data demonstrate that AdC7-M/E is highly effective and represents a promising vaccine candidate for ZIKV control.IMPORTANCE Zika virus (ZIKV) is a pathogenic flavivirus that causes severe clinical consequences, including congenital malformations in fetuses and Guillain-Barré syndrome in adults. Vaccine development is a high priority for ZIKV control. In this study, to avoid preexisting anti-vector immunity in humans, a rare serotype chimpanzee adenovirus (AdC7) expressing the ZIKV M/E glycoproteins was used for ZIKV vaccine development. Impressively, AdC7-M/E exhibited exceptional performance as a ZIKV vaccine, as follows: (i) protective efficacy by a single vaccination, (ii) rapid development of a robust humoral response, (iii) durable immune responses, (iv) robust T cell responses, and (v) sterilizing immunity achieved by a single vaccination. These advantages of AdC7-M/E strongly support its potential application as a promising ZIKV vaccine in the clinic.


Asunto(s)
Adenoviridae , Enfermedades Testiculares/prevención & control , Testículo/inmunología , Vacunación , Vacunas Virales , Infección por el Virus Zika/prevención & control , Virus Zika , Adenoviridae/genética , Adenoviridae/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Chlorocebus aethiops , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Pan troglodytes , Enfermedades Testiculares/inmunología , Enfermedades Testiculares/patología , Testículo/patología , Testículo/virología , Células Vero , Proteínas del Envoltorio Viral/inmunología , Proteínas de la Matriz Viral/inmunología , Vacunas Virales/genética , Vacunas Virales/inmunología , Vacunas Virales/farmacología , Virus Zika/genética , Virus Zika/inmunología , Infección por el Virus Zika/genética , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/patología
16.
Animal Model Exp Med ; 1(1): 68-73, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30891549

RESUMEN

BACKGROUND: To study the antidiabetic effects and mechanisms of the fenugreek extracts in streptozotocin (STZ)-induced type 2 diabetic (T2DM) mice fed a high-fat diet (HFD). METHODS: We established C57BL/6J mice model of T2DM using HFD-fed and STZ-induced method. Then, the mice were administered with two types of fenugreek extracts (E1, flavonoid and E2, stilbene glycoside) for 4 weeks and the effects on fasting blood glucose (FBG), weight, superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and pathological indexes were investigated. RESULTS: Administration of fenugreek extracts decreased the FBG level compared with that of the model group. Comparatively, the high-dose E2 decreased the FBG more significantly than the other treatments did. Both extracts showed an obvious antioxidant effect by increasing serum SOD and CAT activities and decreasing the MDA content. Furthermore, the high-dose E1 showed a significant difference (P < .01) compared with the model group in the three investigated indexes. CONCLUSION: Our study demonstrated that both the flavonoid and stilbene glycoside extracts of fenugreek improved the hyperglycemia in the T2DM mice model. Moreover, the antidiabetic effects of both extracts might be due to their antioxidant activity in vivo.

19.
Cell ; 167(6): 1511-1524.e10, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27884405

RESUMEN

Zika virus (ZIKV) persists in the semen of male patients, a first for flavivirus infection. Here, we demonstrate that ZIKV can induce inflammation in the testis and epididymidis, but not in the prostate or seminal vesicle, and can lead to damaged testes after 60 days post-infection in mice. ZIKV induces innate immune responses in Leydig, Sertoli, and epididymal epithelial cells, resulting in the production of pro-inflammatory cytokines/chemokines. However, ZIKV does not induce a rapid and abundant cytokine production in peritubular cell and spermatogonia, suggesting that these cells are vulnerable for ZIKV infection and could be the potential repositories for ZIKV. Our study demonstrates a correlation between ZIKV and testis infection/damage and suggests that ZIKV infection, under certain circumstances, can eventually lead to male infertility.


Asunto(s)
Infertilidad Masculina/virología , Testículo/virología , Infección por el Virus Zika/virología , Virus Zika/fisiología , Animales , Citocinas/metabolismo , Epidídimo/patología , Epidídimo/virología , Humanos , Infertilidad Masculina/patología , Masculino , Ratones , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptor de Interferón alfa y beta/genética , Testículo/patología , Internalización del Virus , Virus Zika/aislamiento & purificación , Infección por el Virus Zika/patología , Infección por el Virus Zika/transmisión , Tirosina Quinasa del Receptor Axl
20.
J Med Chem ; 59(13): 6303-12, 2016 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-27341624

RESUMEN

Zanamivir and oseltamivir are principal influenza antiviral drugs that target viral neuraminidase (NA), but resistant viruses containing mutant NAs with diminished drug affinity are increasingly emerging. Using the structural knowledge of both drug-binding sites and their spatial arrangement on the homotetrameric NA, we have developed a tetravalent zanamivir (TZ) molecule that exhibited marked increases in NA binding affinity, inhibition of NA enzyme activity, and in vitro plus in vivo antiviral efficacy over zanamivir. TZ functioned against both human seasonal H3N2 and avian H7N9 viruses, including drug-resistant mutants. Crystal structure of a resistant N9 NA in complex with TZ explained the function, which showed that four zanamivir residues simultaneously bound to all four monomers of NA. The design method of TZ described in this study may be useful to develop drugs or ligands that target proteins with multiple binding sites. The potent anti-influenza activity of TZ makes it attractive for further development.


Asunto(s)
Antivirales/farmacología , Farmacorresistencia Viral/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H7N9 del Virus de la Influenza A/efectos de los fármacos , Zanamivir/farmacología , Animales , Antivirales/química , Cristalografía por Rayos X , Perros , Relación Dosis-Respuesta a Droga , Humanos , Células de Riñón Canino Madin Darby/efectos de los fármacos , Células de Riñón Canino Madin Darby/virología , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , Zanamivir/síntesis química , Zanamivir/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...